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ABSTRACT
Describes the LSST Alert Production pipelines, data products, execution environment, and early

performance.
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1. INTRODUCTION
Repeated observations of the night sky enable dis-

covery of transient, variable, and moving objects, and
time-domain measurements are one of the foundational
techniques of astronomical science. The cadence of the
observations, the intrinsic timescales of the phenomena,
and the spatial volume probed by the observations set
the rate of discovery
Eric: cite me; see also Tonry, Ofek

. In recent years, scientists have conducted dedicated
optical time-domain surveys with large CCD mosaic
cameras (e.g., PanSTARRS, DECam, ZTF, HSC, Gaia,
Kepler, TESS) as well as distributed telescope networks
(e.g., ASAS-SN, ATLAS,
Eric: more

). These have yielded large new samples of super-
novae, variable stars, active galactic nuclei, and solar
system objects. Additionally, they have uncovered the
first exemplars of rare new classes of objects
Eric: add some examples: FBOTS, ISOs, asteroids
interior to venus, ...

.
Frequently, time-critical followup observations are

necessary to classify and characterize objects discovered
in time-domain surveys. Historically, human-composed
circulars or telegrams were used to dissemenate discov-
eries to the wider community. The increasing rate of
transient candidates as well as the desire for rapid au-
tomated followup motivated machine-readable alterna-
tives
Eric: VOEvent, GCN, SciMMA/HopSkotch, TNS

. These trends culminated in the public “alert stream”
paradigm employed by ZTF
Eric: cite Patterson
, in which hundreds of thousands of unfiltered dif-

ference image sources are shipped along with historical
lightcurves and image cutouts to third-party alert bro-
kers
Eric: cites
for classification, filtering, and followup. This ap-

proach has enabled fully automated identification and
reporting of supernova candidates.

The Legacy Survey of Space and Time (LSST) to be
conducted by the Vera C. Rubin Observatory promises
an order of magnitude
Eric: confirm or cite
increase in transient discovery. Rubin’s large collect-

ing area, wide field of view, and fast readout and slew
will deliver nearly a thousand
Eric: confirm
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exposures across a wide swath of the Southern Hemi-
sphere sky to unprecedented depths. This capability
motivated the development of a rapid data processing
pipeline to identify and publicize time-variable phenom-
ena in LSST images: the Rubin Alert Production Sys-
tem (AP). Along with the annual Data Release Process-
ing (DRP), these productions make use of the Rubin
Science Pipelines software as well as the larger systems
and infrastructure of Rubin Data Management (DM).
Eric: cites throughout

In this paper, we describe the design, implementation,
and initial performance of the Rubin Alert Production
system.
Eric: outline

2. PIPELINE
consider a (simplified?) pipeline graph

2.1. Template Generation

Pre-DR1 this may require description indepen-
dent of DRP.

High-level discussion of DCR correction could go here.

2.2. Preload
2.3. Single Frame Processing

Construction of calibration products assumed de-
scribed in Rykoff (2019).

ISR, PSF and Background fitting, photometric and as-
trometric calibration. Likely major commonalities with
DRP.

2.4. Image Differencing
2.5. Source Detection and Measurement

Including discussion of point source, dipole, and streak
detection on difference images.

Algorithmic basics could be discussed elsewhere

2.6. Initial Filtering
FilterDiaSourceCatalogTask in lsst.ap.association

2.7. Reliability scoring
Image-differencing searches for transients typically

contend with high rates of false positives. Among the
raw detections, artifacts may dominate real astrophys-
ical sources by an order of magnitude. These may be

due to imperfectly-corrected instrument signatures, as-
trometric mismatches between the template and the sci-
ence image, cosmic rays, or algorithmic failures in the
differencing. Modern surveys employ machine-learned
classifiers to winnow these candidates (e.g., Bailey et al.
2007; Bloom et al. 2012; Brink et al. 2013; Wright et al.
2015; Goldstein et al. 2015; Duev et al. 2019). These
have steadily improved in performance and sophistica-
tion as the classifiers transitioned from Random For-
est models trained on manually-constructed feature sets
to deep neural networks trained directly on image pix-
els. Some approaches have combined both detection and
scoring without using the difference image (Sedaghat &
Mahabal 2017; Acero-Cuellar et al. 2022).
overview of the algorithm, training, and performance
of the ML spuriousness score; detailed discussion
likely deferred to separate paper

2.8. Catalog Transformation
TransformDiaSourceCatalogTask in lsst.ap.association

2.9. Source Association
Due to AP’s real-time nature, it is not possible

to perform post-facto source association as in the an-
nual data releases. Instead, spatial association is per-
formed on-the-fly by the DiaPipelineTask within the
lsst.ap.association package. A dedicated Alert Pro-
duction Database (APDB; §4.2) holds the current state
of the system.

During the preload step (§??), DIAObjects and SSOb-
jects overlapping the expected field of view of the image
are stored in the local prompt processing worker butler
repository. The new DIASources are first spatially asso-
ciated with the existing DIAObjects by finding the clos-
est match within a maximum distance of one arcsecond.
Pairs with the closest spatial separations are joined first
to minimize misassociations. When a match is found,
the DIASource is added to the DIAObject’s list of mea-
surements. Unassociated DIASources are then spatially
associated with the predicted positions of the SSObjects
at the time of the exposure. For DIASources with no
matching DIAObject or SSObject, a new DIAObject is
created and the DIASource is added to it.

2.10. Alert Generation
Formats & contents

2.11. Alert Distribution
Mechanisms, connections to community brokers

2.12. Alert Filtering Service
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2.13. Forced Photometry
2.14. Source Injection

2.15. Metrics
3. PROMPT DATA PRODUCTS

Summary of relevant aspects of the DPDD (Jurić et al.
2023), including latency considerations and user access.

• Images

• Prompt Catalogs and the PPDB

• Alerts

4. PROCESSING ENVIRONMENT
4.1. Prompt Processing Framework

4.2. Databases
4.3. Alert Archive

4.4. Metrics and Dashboards

4.5. Catchup Processing
5. INITIAL PERFORMANCE

5.1. Alert Purity
Raw and after ML scoring

5.2. Alert Completeness
5.3. Alert Latency

5.4. Photometric Precision
5.5. Astrometric Precision
5.6. Association Accuracy

6. DISCUSSION
7. CONCLUSION

figure out how to make LSST technotes have appro-
priate information. lsst.bib has them as misc, should
be okay?
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